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Abstract

Owing to the analogy between the solute and heat transport processes, it can be ex-
pected that the rate of growth of the spatial second moments of the heat flux in a
heterogeneous aquifer over relatively large space scales is greater than that predicted
by applying the classical heat transport model. The motivation of stochastic analysis5

of heat transport at the field scale is therefore to quantify the enhanced growth of the
field-scale second moments caused by the spatially varying specific discharge field.
Within the framework of stochastic theory, an effective advection-dispersion equation
containing effective parameters (namely, the macrodispersion coefficients) is devel-
oped to model the mean temperature field. The rate of growth of the field-scale spatial10

second moments of the mean temperature field in the principal coordinate directions
is described by the macrodispersion coefficient. The variance of the temperature field
is also developed to characterize the reliability to be anticipated in applying the mean
heat transport model. It is found that the heterogeneity of the medium and the correla-
tion length of the log hydraulic conductivity are important in enhancing the field-scale15

heat advection, while the effective thermal conductivity plays the role in reducing the
field-scale heat advection.

1 Introduction

The temperature of the land surface is influenced by seasonal heating and cooling. Wa-
ter seepage near the land atmosphere interface results in a heat transport that modifies20

the temperature profile and, in turn, affects most reactions occurring in the aquifers. In
addition, the information on the heat transfer provides better-constrained groundwater
flow and permeability estimates. It is therefore of great importance in characterizing
and predicting the heat transport processes in the aquifers. Comprehensive overviews
of selected work on heat are given by Anderson (2005) and Saar (2010).25
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The spatially varied velocity field creates the degree of spreading of a solute plume in
a heterogeneous aquifer that is greater than what would occur by local dispersion alone
in the uniform velocity field. Motivated by that, a stochastic methodology is devoted to
relating this enhanced spreading to the characteristics of the velocity field and thus to
the statistical properties of hydraulic conductivity field based on the representation of5

natural heterogeneity as a spatial random variable characterized by a limited number
of statistical parameters. This leads to a solution in terms of an effective dispersion
coefficient (macrodispersion coefficient) for describing the rate of growth of the second
moments of the ensemble averaged concentration field. The stochastic methodology
has successfully provided a basis framework for quantifying and understanding the10

effect of the natural heterogeneity on the field-scale spreading process.
The stochastic methodology is generally built around either the Eulerian or the La-

grangian framework for analyzing the solute transport in heterogeneous media. More
details on the construction of the Eulerian and Lagrangian approaches and their ap-
plication to the analysis of the solute transport in heterogeneous media are provided15

in Rubin (2003). The Eulerian approach develops an effective advection-dispersion
equation (mean transport equation) containing effective parameters and seeks a quan-
titative measure of the uncertainty (the variance) anticipated in applying the effective
transport equation. The effective parameter, which is the outcome of the correlation
between the velocity field and concentration fluctuations, is introduced to quantify the20

enhanced spreading of the solute plume (the field-scale dispersion). Theoretical stud-
ies on the field-scale nonreactive solute transport process have been carried out within
the Eulerian framework (e.g. Gelhar and Axness, 1983; Neuman et al., 1987; Graham
and McLaughlin, 1989; Vomvoris and Gelhar, 1990; Rehfeldt and Gelhar, 1992; Neu-
man, 1993; Kabala and Sposito, 1994; Kappor and Gelhar, 1994; Rajaram and Gelhar,25

1995; Kapoor and Kitanidis, 1997; Guadagnini and Neuman, 1999a; Neuweiler et al.,
2001; Cirpka and Attinger, 2003; Attinger et al., 2004; Morales-Casique et al., 2006;
Chang and Yeh, 2007; Schwede et al., 2008).
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Similar to Taylor’s (1921) classics analysis of turbulent diffusion, the Lagrangian anal-
ysis of field-scale solute transport is focused on the statistical properties of displace-
ments of solute particles through a random velocity field. It offers an alternative and
allows the development of preasymptotic coefficients, travel time statistics of solute
particles and solute fluxes. Note that the effective dispersion coefficient is determined5

by half the rate of change of the particle displacement variance (or the spatial second
moment of a concentration distribution). This approach has been applied to analyze
the nonreactive solute transport in heterogeneous media in a number of papers (e.g.
Dagan, 1984, 1987; Neuman and Zhang, 1990; Dagan et al., 1992; Rubin and Seong,
1994; Indelman and Rubin, 1996; Cvetkovic et al., 1996; Dagan and Fiori, 1997; An-10

dricěvić, 1998; Fiori and Dagan, 1999; Destoumi et al., 2001; Riva et al., 2001; Fiorotto
and Caroni, 2002; Guadagnini et al., 2003; Caroni and Fiorotto, 2005; Bellin and Ton-
ina, 2007).

Due to the analogy between the contaminant and heat transports, it is expected
that the heterogeneity of natural formations also plays an important role in influenc-15

ing the heat advection at field scale. In other words, predictions from the classical
heat transport equation in the uniform velocity field subject to a great deal of uncer-
tainty. However, the application of stochastic methods, used to predict the field-scale
solute transport, to the analysis of heat transport by groundwater in heterogeneous
aquifers has so far not been attempted, and this is the task undertaken here. This20

task is performed using a spectral approach (e.g. Gelhar and Axness, 1983) based
on Fourier-Stieltjes representations for the perturbed quantities under the assumption
of local statistical homogeneity. We seek a mean heat transport containing macrodis-
persion coefficients for describing the field-scale heat advection and the variance for
quantifying the uncertainty anticipated in applying the mean heat transport equation. It25

is hoped that our findings will provide a basic framework for understanding and quanti-
fying field-scale heat transport processes and be useful in stimulating further research
in this area.
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2 Mathematical formulation of the problem

Owing to the analogy between the solute and heat transport processes, the govern-
ing equations for transport in the aquifers can be represented by similar advection-
dispersion equations. Following de Marsily (1986), a temperature-based advection-
dispersion equation at the local scale is of the form5

∂
∂Xi

[(KT+ρCDm)
∂T
∂Xj

−ρwCwqi T ]=ρC
∂T
∂t

i,j =1,2,3. (1)

In Eq. (1), T is the temperature, KT is the effective thermal conductivity, Dm is mechan-
ical dispersion coefficient for heat transport, ρw and Cw are density and specific heat
of fluid, respectively, qi is the specific discharge in the principal coordinate directions,
and ρ and C are density and specific heat of rock-fluid matrix, respectively.10

The effect of thermal dispersion is very small and negligible when compared with
that of conduction (Bear, 1972; Hopmans et al., 2002). This simplifies Eq. (1) to

µ ∂2T
∂Xi∂Xj

−ν
∂

∂Xi
(qi T )=

∂T
∂t

(2)

where µ=KT/ρC and ν= (ρwCw)/(ρC). Note that KT, ρw, Cw, ρ, and C in Eq. (2) are
treated as constants since their variabilities are usually smaller than the variability in15

hydraulic conductivity (Anderson, 2005).
In the analysis that follows, the log-hydraulic conductivity field (lnK ) is assumed

second-order stationary and it is characterized by its variance and correlation scale.
Note that through the Darcy’s law the specific discharge and the hydraulic conduc-
tivity are directly related. Thus, spatially correlated random heterogeneity in the lnK20

field is the cause of the stochastic specific discharge, which in turn results in spatially
correlated random perturbations in the temperature field.

The random space fields of specific discharge and temperature are typically repre-
sented, respectively, by the sum of a mean and a small zero-mean perturbation as:

qi =qi +q′
i (3)25
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T = T +T ′. (4)

The equation for mean temperature is found by substituting perturbation expansions
in specific discharge and temperature, Eqs. (3) and (4), into Eq. (2), assuming incom-
pressibility of the fluid and taking the ensemble average,

µ ∂2T
∂Xi∂Xj

−νq
∂T
∂X1

−ν
∂

∂Xi
〈q′

i T
′〉= ∂T

∂t
(5)5

while the equation for the temperature perturbation is obtained by subtracting the re-
sulting mean equation from Eq. (2)

µ ∂2T ′

∂Xi∂Xj
−νq

∂T ′

∂X1
−νq′

i
∂T
∂Xi

=
∂T ′

∂t
(6)

where the mean fluid flow is parallel to the X1 coordinate axis so that q1 =q and q2 =
q3 =0, and < > stands for the ensemble average.10

The last term on the left-hand side of Eq. (5) is referred to as macrodispersive flux in
the work of Gelhar and Axness (1983) for the case of the solute transport in a saturated
heterogeneous aquifer. It reflects the additional (and indeed dominant) heat advection
produced as the result of the correlation between specific discharge and temperature
fluctuations. This term may be fully characterized by solving Eq. (6), which describes15

the temperature perturbation due to the variation of specific discharge. The evaluation
of the macrodispersive flux is the focus of this paper. As will be seen below, this
term introduces the dispersive effect of the variability in the specific discharge on the
temperature field.

In this study, the flow domain under consideration is assumed to be of a sufficiently20

large extent. Note that to fully characterize the variation in flow field, one must know
the spatial behavior of the mean hydraulic head. The spectral representation theorem
of random head perturbations in Fourier space will not be feasible if the mean hydraulic
head has the pattern of spatial variability. In other words, the critical condition needed
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in the solution of the flow perturbations is that the mean hydraulic gradient must be
approximately constant (or the mean fluid flow is uniform). The uniform mean flow con-
dition corresponds to the case where the size of the flow domain becomes infinite. In
practice, the validity of the uniform mean flow assumption (or infinite-domain assump-
tion) requires that the correlation length of the random fields is much smaller than the5

domain size (e.g. Ababou et al., 1988; Dagan, 1989).

3 Spectral solutions of macrdispersion coefficients

In analyzing changes in the temperature field in time, it is convenient to introduce a
moving coordinate system, ξ1 =X1 −νqt, ξ2 =X2, and ξ3 =X3, that follows the mean
advective movement of the heat distribution. As such, Eqs. (5) and (6) take the following10

forms

µ ∂2 T̄
∂ξi∂ξj

−ν
∂
∂ξi

〈q′
i T

′〉= ∂T̄
∂t

(7)

µ ∂2T ′

∂ξi∂ξj
−νq′

i
∂T
∂ξi

=
∂T ′

∂t
. (8)

Equation (8) can be solved using the spectral representation (e.g. Gelhar and Axness,
1983; Rehfeldt and Gelhar, 1992) based on Fourier-Stieltjes representation for the15

perturbed quantities in wave number domain. By using this approach, the random
perturbations in Eq. (8) are represented by the following 3-D wave number integrals:
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T ′ =

∞∫
−∞

exp{i [R1(ξ1+νqt)+R2ξ2+R3ξ3]}dZT(R,t) (9)

q′
i =

∞∫
−∞

exp{i [R1(ξ1+νqt)+R2ξ2+R3ξ3]}dZqi
(R) (10)

where R = (R1,R2,R3) is the wave number vector, and dZT(R,t) and dZqi (R) are the
complex Fourier-Stieltjes increments. The transient-state spectral relation follows from
Eq. (8) through the application of Eqs. (9) and (10) and the use of uniqueness of the5

representations:

∂
∂t

dZT(R,t)+ (iνR1+εR
2)qdZT(R,t)=−ν ∂T̄

∂ξi
dZqi

(R) (11)

where R2 =R2
1 +R2

2 +R2
3 and ε=µ/q.

Note that Eq. (11) has been obtained under the assumption of negligible
perturbation-boundary effects. Naff and Vecchia (1986) studied the impervious bound-10

ary effects on the head covariances for a steady three-dimensional flow in a formation
of infinite horizontal extent, bounded above and below by impervious horizontal bound-
aries. They demonstrated that the boundary effect is largely limited to a zone near
the medium boundary. Similar results were also obtained by Rubin and Dagan (1988,
1989), who analyzed the effects of constant head and impervious boundary conditions15

on the head variation in semi-infinite aquifers. In addition, it is of interest to note how
the type of boundary conditions affects the head covariance function in heterogeneous
media. Bonilla and Cushman (2000) found that for a flow of constant mean head gra-
dient, the effects of the Dirichlet boundary conditions (prescribed head) on the head
covariance function is restricted to a boundary layer from three to four integral scales.20

However, under the same circumstances, effects of the Neumann boundary conditions
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(prescribed flux) may persist as far as three to eight integral scales from the bound-
ary. Therefore, it may conclude that the assumption of negligible boundary effects is
applicable, at least far enough from the boundary.

The general solution to Eq. (11) can be found as

dZT(R,t)=−νexp[−(iνR1+εR
2)qt]dZqi

(R)
∫

exp[(iνR1+εR
2)qt]

∂T̄
∂ξi

dt+dZ0 (12)5

in which dZ0 is a constant of integration that depends on the initial temperature dis-
tribution. In general, the mean temperature field is a smooth function of space and
time and the perturbations fluctuate on a much smaller scale than that associated with
variations in the mean. The mean temperature gradient in Eq. (12) may therefore be
approximated as a constant and it may be taken outside of the time integration. It is10

expected that the assumption of a constant mean temperature gradient will not be valid
near the heat source where a large temperature gradient and sharp curvature occur.

It is assumed that the initial temperature distribution in the aquifer is known. Thus,
there is no temperature perturbation at t=0. That is, with dZT =0 at t=0. The solution
of Eq. (12) with dZT =0 at t=0 is15

dZT(R,t)= νGi
1−exp[−(iνR1+εR

2)qt]

εR2+iνR1

dZqi
(R)

q
(13)

where Gi =−∂T̄/∂ξi . The random temperature perturbation results from Eqs. (9) and
(13) as follows:

T ′ = νGi

∞∫
−∞

exp{i [R1(ξ1+νqt)+R2ξ2+R3ξ3]}
1−exp[−(iνR1+εR

2)qt]

εR2+iνR1

dZqi
(R)

q
. (14)

The macrodispersive heat flux term in Eq. (7) (or Eq. 5) is then found by multiplying20

Eq. (14) by the complex conjugate of dZqi and taking the ensemble average
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〈T ′q′
i 〉=qβi jGj (15)

where the macrodispersivity for heat transport βi j is given by the integral

βi j = ν

∞∫
−∞

1−exp[−(iνR1+εR
2)qt]

εR2+iνR1

Sqj qi
(R)

q2
dR. (16)

The spectrum of the specific discharge in Eq. (16) can be determined from the Fourier-
Stieltjes representation for the first-order perturbed form of the Darcy equation and the5

spectral solution for the head perturbations (e.g. Gelhar and Axness, 1983):

Sqj qi
(R)=q2(δi1−

R1Ri

R2
)(δj1−

R1Rj

R2
)Sff(R) (17)

where Sff(R) is the spectrum of lnK perturbations. The macrodispersivities can thus be
written from Eq. (16) with the spectrum of the specific discharge given by Eq. (17) as

βi i = νε

∞∫
−∞

R
2

ε2R4+ν2R2
1

(δi1−
R1Ri

R2
)2Sff(R)dR10

+ν

∞∫
−∞

exp(−εR2qt)
νR1sin(νR1qt)−εR

2cos(νR1qt)

ε2R4+ν2R2
1

(δi1−
R1Ri

R2
)2Sff(R)dR. (18)

Generally, the expression for the effective parameter (18) is a second-order tensor,
however, the off-diagonal components are zero due to an odd term in R2 or R3 involved
in the integration over the wave number domain.

By substituting Eqs. (15) and (18) into Eq. (7), we then obtain the following mean15

heat transport equation:
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(µ+βi jq) ∂2 T̄
∂ξi∂ξj

=
∂T̄
∂t

(19)

where (a) for i = j , βi i is defined by Eq. (18), and (b) for i 6= j , βi j = 0. It is clear from
Eq. (18) that the macrodispersivities, while being dependent on travel time (or mean
travel distance), do not depend on the type of coordinates used. Thus, these parame-
ters are identical in the mean heat transport equation that uses the fixed coordinates5

(X1, X2, X3), and we can rewrite Eq. (19) as

(µ+βi jq) ∂2 T̄
∂Xi∂Xj

−q
∂T̄
∂X1

=
∂T̄
∂t

. (20)

4 Spectral solution of temperature variance

We have made use of the spectral representation and a perturbation approximation
to develop an effective advection-dispersion Eq. (20) containing effective parameters10

(namely, the macrodispersion coefficients, Eq. 18) in quantifying the field-scale heat
transport processes. The macrodispersion coefficients in Eq. (20) or Eq. (18) are used
to determine the field-scale rate of growth of the spatial second moments of the heat
flux in the principal coordinate directions in a heterogeneous aquifer. Since the en-
hanced growth of the second moments is caused by the spatially varying specific dis-15

charge field, the outcome of the spatial variation in hydraulic conductivity field, it has
been related to the statistical properties of the hydraulic conductivity. This implies large
uncertainty to be anticipated in applying the mean transport Eq. (20). Therefore, there
is a need to provide a basis for judging reliability of the field-scale mean transport
model.20

The theoretical result (14) may also be used to determine the variance of tempera-
ture fluctuations which can be developed within the spectral framework as follows (e.g.
Vomvoris and Gelhar, 1990)
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σ2
T = 〈T ′T ′∗〉

= ν2G2
i

∞∫
−∞

1−2cos(νR1qt)exp(−εR2qt)+exp(−2εR
2qt)

ε2R4+ν2R2
1

(δi1−
R1Ri

R2
)2Sff(R)dR (21)

where the asterisk denotes the operation of complex conjugation. The temperature
variance is a measure of the variation of the temperature about the mean temperature.
Thus, it turns out that Eq. (21) will give us a quantitative measure of the reliability to be5

anticipated in applying the mean transport model (20).
In general, the stochastic analysis leading to the analytical results (Eqs. 18 and 21)

relies on some kind of small parameter expansions and the assumption of stationar-
ity for the distribution of flow properties, where the small parameter corresponds to
the variability of the underlying random log hydraulic conductivity field. The validity10

of those assumptions requires that the standard deviation of the random log hydraulic
conductivity fluctuations, σf, should be smaller than unity (Gutjahr and Gelhar, 1981).
However, from a Monte Carlo simulation study, Zhang and Winter (1999) found it to
be accurate for the head moment solutions for the value of variance of log hydraulic
conductivity (σ2

f ) as high as 4.38. A similar finding was reported in Guadagnini and15

Neuman (1999b) even for strongly heterogeneous media with σ2
f up to 4 from the com-

parison of the moments of hydraulic head with the results of numerical Monte Carlo
simulations.

5 Closed-form expressions for macrdispersion coefficients

The field-scale dispersivity in Eq. (18) and temperature variance in Eq. (21) are de-20

termined once the form of the spectrum of log hydraulic conductivity perturbations is
specified. The evaluation of Eqs. (18) and (21) cannot be performed analytically for the
general case of statistically anisotropic lnK distribution. However, to take the advantage
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of closed-form expressions, which provide a clear insight of the impact of heterogene-
ity on the behavior of heat transport, we assume statistical isotropy of the lnK field. In
addition, the random lnK perturbation field under consideration is characterized by a
Gaussian covariance function (Dagan, 1994; Zhang and Di Federico, 1998)

Rff(`S)=σ2
f exp(−

π`2
S

4λ2
) (22)5

which has the following spectral density function

Sff(R)=
1
8

λ3

π3/2
σ2

f exp(−λ2

4
R2) (23)

where `S is the separation distance or lag, σ2
f is the variance of lnK and λ is the

correlation scale of lnK .
The closed-form expressions for macrodispersivities in the principal coordinate di-10

rections can be developed by substituting Eq. (23) into Eq. (18) and integrating over
the wavenumber domain:

β11 =σ2
f λ{−

16

P 3
− 8

3
1
P
+

16
√
π

P 4
exp(P

2

4
)[Ψ(Λ)−Ψ(

P
2

)]+ [(
4

P 2
+

1
2

)η2−3
4

]
Λ
η4

exp(−η2)

+
√
π[(

16

P 4
+

4

P 2
+

1
2

)η4−(
2

P 2
+

1
2

)η2+
8
3

]
ΛΦ(η)

η5
−
√
π

4
P
τ

(
3
4

1

η4
− 1

η2
+1)Φ(η)

− 1
4
P
τ

(−3
2

1

η3
+

1
η

)exp(−η2)} (24)15

β22 =β33

=σ2
f λ{

8

P 3
+

1
3

1
P
+
√
π(− 8

P 4
+

1

P 2
)exp(P

2

4
)[Ψ(Λ)−Ψ(

P
2

)]+ (−2
η2

P 2
+

3
8

)]
Λ
η4

exp(−η2)
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+
√
π[−(

8

P 4
+

1

P 2
)η4+(

2

P 2
+

1
8

)η2− 3
16

]
ΛΦ(η)

η5
+
√
π

16
P
τ

(
3
2

1

η4
− 1

η2
)Φ(η)

− 3
16

P
τ

1

η3
exp(−η2)} (25)

where Φ(−) and Ψ(−) denote the error function and its complementary error function,
respectively, P =ρwCwqλ/KT, τ = νqt/λ, η= [P τ2/(P +4τ)]0.5, Λ= [P (P +4τ]0.5/2−η.

In the limit of τ→∞, the longitudinal and transverse macrodispersivities converge,5

respectively, to

β11(τ→∞)=σ2
f λ{

√
π

2
+

16
√
π

P 4
− 16

P 3
+

4
√
π

P 2
− 8

3
1
P
− 16

√
π

P 4
exp(P

2

4
)Ψ(

P
2

)} (26)

β22 =β33(τ→∞)=σ2
f λ{−

8
√
π

P 4
+

8

P 3
−
√
π

P 2
+

1
3

1
P
−
√
π(− 8

P 4
+

1

P 2
)exp(P

2

4
)Ψ(

P
2

)]}. (27)

The linear relationship between the longitudinal and transverse macrodispersivities and
σ2

f in Eqs. (24) and (25) suggests that the dispersive flux of the heat at the field scale10

increases linearly with the heterogeneity of the medium. Figure 1a and b depicts the
behavior of normalized longitudinal and transverse macrodispersivities, respectively, as
a function of normalized time. Similar to the case of nonreactive solute transport, the
longitudinal macrodispersivity for heat transport increases monotonically with time to
its asymptotic value, while the transverse macrodispersivity first increases to its max-15

imum and then decreases to its asymptotic value. These figures also indicate that
macrodispersivities are inversely dependent upon the effective thermal conductivity KT
at fixed travel time. The larger the effective thermal conductivity, the higher the capacity
of the medium to attenuate the advection of heat front in the longitudinal and transverse
directions.20

The result of (26) is presented graphically in terms of a function of P (or the correla-
tion scale of lnK , λ) in Fig. 2. It is clear that the correlation scale of lnK has a positive
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effect on the asymptotic longitudinal macrodispersivity (or the field-scale heat advec-
tion). An increase in λ produces more persistence of the specific discharge fluctuation
and in turn leads to larger deviations of specific discharge from the mean specific
discharge. It is clear from Eq. (14) that the fluctuations in the temperature field are
positively correlated to those in the specific discharge. Therefore, the field-scale heat5

advection increases with the correlation scale of lnK .

6 Conclusions

Within the framework of stochastic theory, this paper has presented the analysis of
field-scale heat transport in heterogeneous aquifers. Making use of the spectral repre-
sentation and a perturbation approximation leads to closed-form solutions for the field-10

scale dispersive heat flux in the principal coordinate directions in terms of macrodisper-
sion coefficients. These solutions, expressed in terms of the statistical properties of log
hydraulic conductivity and the effective thermal conductivity, are allowed to investigate
the influence of the effective thermal conductivity and correlation scale of log hydraulic
conductivity on the field-scale heat advection. The general expression for the variance15

of the temperature field is also developed to characterize the reliability to be anticipated
in applying the mean heat transport model.

Our results indicate that the heterogeneity of the medium has a positive influence on
the dispersive flux of the heat at the field scale. Larger effective thermal conductivity
results in reduced the field-scale dispersive heat flux and produces less heat advec-20

tion. The correlation scale of log hydraulic conductivity is important in enhancing the
variability of the specific discharge and in turn the field-scale heat advection. It is hoped
that our findings will stimulate further research in this area.
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Fig. 1. Normalized (a) longitudinal and (b) transverse macrodispersivities as a function of
normalized travel time.
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Fig. 2. Dimensionless longitudinal macroscopic dispersivity as a function of P where
Ξ=KT/(ρwCwq).
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